The (im)possibility of simple search-to-decision reductions for approximation problems

Spencer Peters, and
Optimization Problems

• Any optimization problem comes in (at least!) two flavors.

• Is search (argmin) harder than decision (min)?

• In this talk, we’ll consider limited, black-box access to \(f \).

• **Search**: find \(x^* \) such that
 \[
 f(x^*) = \min_{x \in \{0,1\}^n} f(x)
 \]

• **Decision**: compute
 \[
 \min_{x \in \{0,1\}^n} f(x)
 \]

• “Weak Decision”: decide if
 \[
 \min_{x \in \{0,1\}^n} f(x) \leq r
 \]
A search-to-decision reduction

- Uses only linearly many MIN queries ($2n$).
- In fact, linear time!
- “Instance-wise equivalence”
- Applies directly to many NP-optimization problems, like Max-SAT.

\begin{tikzpicture}
 \node (root) at (0,0) {
 $*$ MIN = 3
 }
 \node (zero) at (-1.5,-1) {
 0... MIN = 5
 }
 \node (one) at (-0.5,-1) {
 1... MIN = 3
 }
 \node (ten) at (0.5,-1) {
 10...
 }
 \node (eleven) at (1.5,-1) {
 11...
 }
 \node (tenone) at (1,-2) {
 10...1 MIN = 3
 }
 \node (psi) at (4,-2) {
 Boolean constraints ψ
 }
 \node (psi_zero) at (4,-3) {
 ψ's with $x_i \mapsto 0$
 }
 \node (psi_one) at (4,-4) {
 ψ's with $x_i \mapsto 1$
 }

 \draw[->] (root) -- (zero);
 \draw[->] (root) -- (one);
 \draw[->] (zero) -- (ten);
 \draw[->] (zero) -- (eleven);
 \draw[->] (one) -- (ten);
 \draw[->] (one) -- (eleven);
 \draw[->] (ten) -- (tenone);
 \draw[->] (eleven) -- (tenone);
 \draw[->] (psi) -- (psi_zero);
 \draw[->] (psi) -- (psi_one);
\end{tikzpicture}
What about approximate Optimization?

• γ-Approximation: find x:
 $$f(x) \leq \gamma \cdot \text{MIN}$$

• γ-Estimation: compute r:
 $$\text{MIN} \leq r \leq \gamma \cdot \text{MIN}$$

• Is Approximation harder than Estimation?
The “greedy” reduction

- Let’s say $\gamma = 2$.
- Still linear queries and linear time 😊
- What about the Approximation factor γ' we achieve?
The “greedy” reduction

- What about the \textbf{Approximation} factor γ' we achieve?
- γ' could be as large as γ^n!
- Can we do better?
The “greedy” reduction

- k branches rather than 2
- Recurse on the leaf with the minimal estimate
- Depth is roughly $n / \log k$.
- $\gamma' \approx \gamma^{n / \log k}$
- Pay in increased number of queries $q = kn / \log k$
- In the typical case $k \gg n$: $\gamma' \approx \gamma^{n / \log q}$
- Still has applications! [Ste16]
- Question: Is greedy optimal?
Branch-and-bound algorithms

- At a high level, a generalization of the “greedy” reduction!
- Practical. (e.g., [MJSE16]). Used for combinatorial optimization problems like TSP, MaxCSPs [BMHW21, Cook16]
- Question: how powerful are “black-box” branch-and-bound algorithms?
Our Model

Let \mathcal{F} be a class of functions $f: \{0, 1\}^n \rightarrow \mathbb{R}_{\geq 0}$. Let \mathcal{S} be a class of “estimable” subsets of the domain.

Given an oracle $h_f: \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\min_{S} f \leq h_f(S) \leq \gamma \cdot \min_{S} f$, (and no other access to f!)

how many oracle queries q are needed to find $f(x) \leq \gamma' \min_{\{0,1\}^n} f$?

(with constant probability, in the worst case over f and h_f.)

”Black-box branch and bound” model.

• Both weaker and stronger than real-world BB algorithms
• Weaker: only access to f through the oracle
• Stronger: have access to a powerful oracle!
Our Results

- For arbitrary f, greedy is optimal!
- A tight lower bound for the Traveling Salesperson Problem (TSP).
- A strong lower bound for Max-Constraint Satisfaction Problems.

<table>
<thead>
<tr>
<th>Class \mathcal{F}</th>
<th>Queries \mathcal{S}</th>
<th>Rough tradeoff</th>
<th>Precise bounds*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary</td>
<td>Arbitrary</td>
<td>$\gamma' \approx \gamma^{n/\log q}$</td>
<td>$\gamma' = \gamma^{\frac{n}{\ell} + O(1)} \Rightarrow O\left(\frac{2^\ell}{\ell}\right) \leq q \leq O(n \cdot \frac{2^\ell}{\ell})$</td>
</tr>
<tr>
<td>Traveling Salesperson</td>
<td>Partial tours</td>
<td>$\gamma' \approx \gamma n / \log q$</td>
<td>$\Omega((\gamma - 1)n / \log q) \leq \gamma' \leq \gamma n / (\log(q) - 1)$</td>
</tr>
<tr>
<td>Max-CSPs</td>
<td>Partial assignments</td>
<td>$\gamma \approx 1 + \sqrt{\log(q)/n}$</td>
<td>No nontrivial reductions, unless $q \geq \exp(-O((\gamma - 1)^2n))$</td>
</tr>
</tbody>
</table>
Useless Oracles

• **Idea:** Find $\mathcal{D} \in \Delta(\mathcal{F})$ such that for every S, the min of $f \leftarrow \mathcal{D}$ over S is overwhelmingly likely to fall in a fixed interval of width γ.

• Then, for $f \leftarrow \mathcal{D}$, a γ-estimation oracle h_f is useless! You know in advance what it’s going to tell you.

• How do we make this intuition formal?
Useless Oracles

• Generalizing the intuition from last slide, any oracle \mathcal{O} is useless if most of its answers are predictable!

Useless Oracle Lemma:

• **IF** predictable:

 \exists a fixed function g, $\forall x$, $\Pr_{\mathcal{O} \leftarrow \mathcal{D}} [\mathcal{O}(x) = g(x)] \geq 1 - p$,

• **THEN** useless: \forall oracle algorithms \mathcal{A} making at most q queries,

 \[d_{TV}(\mathcal{A}^\mathcal{O}(), \mathcal{A}^g()) \leq pq. \]
Useless Estimators

- **Goal**: Find $\mathcal{D} \in \Delta(\mathcal{F})$ such that for every S, the min of $f \leftarrow \mathcal{D}$ over S falls in some interval $[z_S, \gamma z_S]$ with large probability $\geq 1 - p$.
- When it does, can set $h_f(S) = g(S) := \gamma \cdot z_S$.
- By the useless oracle lemma, any \mathcal{A} making $\leq q$ queries satisfies
 \[d_{TV}(\mathcal{A}^{h_f}, \mathcal{A}^{g}) \leq pq. \]
- Since \mathcal{A}^g is independent of f, we’re (almost) done!
- Last step: show no fixed x^* independent of f does well.
“Greedy” is optimal

- **Goal**: Find $\mathcal{D} \in \Delta(\mathcal{F})$ such that for every S, the min of $f \leftarrow \mathcal{D}$ over S falls in some interval $[z_S, \gamma z_S]$ with probability $\geq 1 - p$.
- For each x, set $f(x) = \gamma^i$ independently with some probabilities p_i.
- Notice that then the distribution of $\min_S f$ only depends on $|S|$.
- Carefully choose rapidly increasing $p_i \propto 2^i$ so that:
 - For each $|S|$, there is an i such that
 - Very likely to have $\gamma^i \in f(S)$, but
 - Very unlikely to have $\gamma^{i-2} \in f(S)$ (or any smaller value)
 - So can almost always set $h_f(S) = \gamma^i$ independently of f.

Traveling Salesperson

• **Problem:** Given a complete undirected graph on \(n \) nodes along with edge costs, find a Hamiltonian cycle (complete tour) of (approx.) minimum weight.

• **Model:** Queries \(S_p \) consist of all tours extending a path \(p \).

• **Hard Distribution:** For each edge, flip a coin and assign either \(c(e) = 1 \) or \(c(e) \approx \gamma n / \log q \). Short paths don’t move the needle, and long paths have concentrated weight.

• **Matching (inefficient) algorithm:** Query all paths of length \(\ell \approx \log q \) and (inefficiently) find the cycle minimizing the sum of path estimates.
Max-Constraint Satisfaction Problems

• **Problem:** Given constraints from some family on n Boolean variables, find an assignment that satisfies as many as possible.

• **Model:** Queries S_w extending a *partial assignment* w.

• **Hard Distribution:** Sample independent constraints consistent with a random planted assignment.

• **Exceptions:** “Trivially unsatisfiable” families—queries can leak the instance f.
Open Questions

• The most obvious direction is to study more function classes \mathcal{F}.
• Average-case results?
• More interestingly, could we make richer models of branch-and-bound algorithms that still have provable lower bounds?
Thank you!

• Feel free to follow up with me at speters@cs.cornell.edu
References

• [Ste16]: Noah Stephens-Davidowitz. *Search-to-decision reductions for lattice problems with approximation factors (slightly) greater than one*. In APPROX, 2016