Lattice Problems beyond Polynomial Time

Zvika

Brakerski

Divesh Aggarwal

Zeyong Li

Huck Bennett

Spencer Peters

Noah Stephens-Davidowitz

Sasha Golovnev

Rajendra Kumar

Vinod Vaikuntanathan

Organization

- Flipping the usual order!
- FIRST, an overview of results, so you have the big picture in mind
- THEN background, motivation, and implications

Overview

Approximating a certain important problem...

Background

(What approximation problem are we talking about?!)

Lattices

• A lattice is a set of the form

 $\mathcal{L} = \{z_1 \boldsymbol{b_1} + z_2 \boldsymbol{b_2} + \dots + z_n \boldsymbol{b_n} : z_i \in \mathbb{Z}\}$

where $b_1, b_2, ..., b_n \in \mathbb{R}^d$ are linearly independent.

- $\lambda_1(\mathcal{L}) \coloneqq \min_{v \in \mathcal{L}, v \neq 0} \| v \|$. (The length of a shortest nonzero vector in \mathcal{L} .)
- The γ -approximate Shortest Vector Problem (γ -SVP): given a basis \pmb{B} for $\mathcal L$ and number r, decide whether

$$\lambda_1(\mathcal{L}) \leq r$$
, or $\lambda_1(\mathcal{L}) > \gamma \cdot r$.

Lattice Cryptography

(or, why is SVP so important?)

- Cryptography that is
 - Believed post-quantum secure (and recently standardized by NIST for that reason [NIST22]).
 - Based on worst-case assumptions as opposed to average-case ones [Ajt96, Reg05, MR07, Pei09].
 - Enabling advanced constructions, most notably Fully Homomorphic Encryption (FHE) [Gen09, BV11].
- Why "beyond Polynomial Time"?
 - Widely believed that the fastest algorithms for n^c -SVP run in time $2^{\Omega(\frac{n}{c})}$.
 - Assumed in setting parameters!
 - If we're making this assumption in practice, we should make use of it in theory for better security guarantees.
 - We should also try to prove (conditional) exponential hardness.

Results and Implications

Security Guarantees

 $n^{3/2}$ n^2 \boldsymbol{n} if hard, if hard quantumly, if hard classically, secret-key crypto public-key crypto public-key crypto exists exists [Reg05] exists [Ajt98, MR07] [Pei09] Cryptography The $2^{\varepsilon n}$ -time world \sqrt{n} \boldsymbol{n} if $2^{\varepsilon n}$ -hard (classically), if $2^{\varepsilon n}$ -hard, public-key crypto secret-key crypto exists exists Cryptography

The poly(n)-time world

Private-coin protocol. Can be made public-coin (true coAM) with standard tricks.

Example: coAM Claim: $O_{\varepsilon}(1)$ -SVP \in coAMTime[2^{εn}]

 $\lambda_1(L) > 1 \Rightarrow$ balls are disjoint.

 $\lambda_1(L) \leq O_{\varepsilon}(1) \Rightarrow$ at least $2^{-\varepsilon n}$ fraction of each ball overlaps.

Thanks for listening (from all of us)!

Divesh

Aggarwal

Zeyong

Huck Bennett

Zvika Brakerski

Golovnev

Rajendra Kumar

Spencer Noah Peters

Stephens-Davidowitz

Vinod Vaikuntanathan

I'm happy to take further questions at sjpeters@cs.cornell.edu.

Improved security guarantees

Prior work

- Private-key cryptography is secure if there are no polynomial-time algorithms for *n*-SVP.
- Public-key cryptography is secure if there are no poly-time quantum algorithms for n^{1.5}-SVP, OR if there are no polytime classical algorithms for n²-SVP.

This work

- Private-key cryptography is exponentially secure if there are no $2^{\varepsilon n}$ -time algorithms for \sqrt{n} -SVP.
- Public-key cryptography is exponentially secure if there are no $2^{\varepsilon n}$ -time algorithms for *n*-SVP.

Hardness Barriers

Prior work

- $\sqrt{n/\log n}$ -SVP \in coAM
- \sqrt{n} -SVP \in coNP

Shows that $\sqrt{n/\log n}$ -SVP is not NP-hard, assuming the polynomial hierarchy does not collapse.

This work

- $O_{\varepsilon}(1)$ -SVP \in coAMTime[2^{εn}]
- $O_{\varepsilon}(\sqrt{\log n})$ -SVP $\in \operatorname{coNTime}[2^{\varepsilon n}]$
- $O_{\varepsilon}(1)$ -SVP \in coMATime[2^{εn}]
 - No analogue in poly-time world.

Shows that $O_{\varepsilon}(1)$ -SVP is not exponentially hard, assuming variants of the Exponential Time Hypothesis.