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Context

Content moderation

Supervising “street-level” algorithms [AB19].

Legal systems

Selective sampling + online decision-making

Consistency matters
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Preliminaries

The Setting

Instance space X , distribution D over X . Hypothesis space H.

The Task

Algorithm gets i.i.d. samples X1,X2, . . . ,XT one at a time.
Guaranteed that labels are h

⇤(Xt) for some h
⇤
2 H (realizability).

After seeing Xt , can either ask for its label h⇤(Xt), or try to guess
it.

The (Informal) Goal

Minimize sum of # wrong guesses and # label requests.x



Main Result

Definition (Version Space Ht)

Ht = {h 2 H | h(Xi ) = h
⇤(Xi ) for all 1  i  t � 1}.

CAL algorithm ACAL [CAL94]

Guess yt only if h(Xt) = yt for all h 2 Ht . Otherwise ask for Xt ’s
label.



Main Result

Theorem

If d � 1, D is uniform on the unit hypersphere S
d
⇢ Rd

, and H is

the set of halfspaces through the origin, then ACAL makes

⇥(d3/2 logT ) label requests in expectation (and no wrong

guesses).
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Main Result

Theorem

If d � 1, D is uniform on the unit hypersphere in Rd
, and H is the

set of halfspaces through the origin, then ACAL makes

⇥(d3/2 logT ) label requests in expectation (and no wrong

guesses).

This is the optimal dependence on T ; known PAC lower
bounds imply ⌦(d logT ).
Moreover, we show that in this setting,

ACAL can be implemented in (amortized expected) time O(d3.6)
per instance Xt , independent of t.

This implementation has reasonable wall-clock time
performance (⇠ 0.3 seconds per instance) even for moderately
large numbers of features (d = 50).



Related Work

Disagreement coe�cient-based analysis due to Hanneke
[Han07, Han14], specialized to our setting: with probability
1� �, ACAL makes

O(d3/2 log
p

d logT +
p

d logT log
logT

�
)

label requests with high probability.

Our result, although not a high-probability bound, removes
the log logT term, thus showing ACAL eventually performs
better than previously known when d is fixed.

Hanneke’s analysis did not show that ACAL can be
implemented e�ciently.
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Related Work

Prior e�cient algorithms for selective sampling include the
Active Modified Perceptron algorithm [DKM05] and a class of
margin-based algorithms [BBZ07]. All of these algorithms
make mistakes.

Moreover, their error bounds all have O(logT log logT )
dependence on T . (Some of them have the optimal O(d)
dependence on dimension.)

However, these algorithms apply in more general settings.
Margin-based algorithms have been shown to work for more
general distributions over Rd , namely, log-concave
distributions [BL13]. Also, an analogue of ACAL has been
designed for the agnostic case where the labels need not
correspond to some h

⇤
2 H [BBL09].
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Undetermined Observations
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Equivalent Sample
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Undetermined Observations are Vertices
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Cone Size is Constant
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Cone Size is Constant

Power of email! Result based on [Kab20] after I found [KMTT19].
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Putting it Together
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Implementing CAL

Algorithm 1 CAL

1: B  ;

2: N = 0 . |B| after last call to RRP.
3: for t = 1, 2, . . . do
4: if Xt 2 cone(B) then
5: Classify Xt as positive.
6: else if �Xt 2 cone(B) then
7: Classify Xt as negative.
8: else
9: Ask for the label Yt .

10: Compute Zt = YtXt .
11: B  B [ {Zt}

12: if |B| � 2N then
13: B  RRP(B)
14: N  |B|.
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Implementing CAL with Linear Programming

LP has 04312 C nw lag n C na39
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Results
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(a) Time per iteration, d = 10

0 1000 2000 3000 4000 5000
t

10�5

10�4

10�3

10�2

10�1

100

101

102

It
er
at
io
n
ti
m
e
(s
)

(b) Time per iteration, d = 50
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Results
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(a) Size of the set B, S10.

0 1000 2000 3000 4000 5000
t

0

200

400

600

800

|Bt|

(b) Size of the set B, S50.



Summary

ACAL [CAL94] is optimal among selective sampling algorithms
that make no mistakes.

We show that, in the commonly studied setting of
D = UnifSd and H halfspaces through the origin, it is more
label-e�cient than previously thought, and it can be
implemented in a computationally e�cient manner.

This suggests that “safe” decision-making rules similar to
ACAL deserve a second look for applications such as content
moderation, legal processes, and the supervision of algorithms.
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Future Directions

Real world decision making is noisy and complicated. ACAL

has been extended to an algorithm A
2 for the “agnostic”

setting, which can model noisy labels and tolerate simplified
hypothesis classes [BBL09]. Can our analysis be extended to
A
2?

What about richer classes of distributions, such as
log-concave distributions [BL13]?

Modeling hypothesis classes that change over time (evolving
norms)?

What are the obstacles to using ACAL in practice?



Questions?
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Lower Bounds from PAC

Definition (PAC learning sample complexity mH,D(✏, �), informal
[Val84] [BI91])

mH, D(✏, �) is the minimum number of labeled samples needed to
(with probability at least 1� �) return a classifier with error
probability at most ✏, given that instances are drawn from D and
labeled by some hypothesis in H.

Proposition

Let LT be the total number of label requests, MT be the total
number of misclassifications, and CT = LT +MT . If
mH,D(✏, �) 2 ⌦(f (✏, �)), then for some c > 0,� > 0, all selective

sampling algorithms have ECT 2 ⌦
⇣PT

t=1 f
0�1(ct)

⌘
, where

f
0 = f (✏,�).



Our Lower Bound

[Lon95, Theorem 1]

mH,UnifSd (✏, �) = ⌦(d✏ + 1
✏ log

1
� ).

Plugging this into last slide’s Proposition gives

Proposition

If X = Rd and the Xt are drawn i.i.d. from the uniform
distribution on S

d , then all algorithms for selective sampling incur
expected cost ⌦(d logT ).



No Upper Bounds from PAC

Figure: All points always undetermined


