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Context

m Content moderation ?
y A J/
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/- Supervising “street-level” algorithms [AB19].

m Legal systems

m Selective sampling + online decision-making

m Consistency matters
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Preliminaries

The Setting

Instance space X, distribution D over X'. Hypothesis space H.

The Task

Algorithm gets i.i.d. samples Xi, X5,..., X7 one at a time.
Guaranteed that labels are h*(X;) for some h* € H (realizability).
After seeing X, can either ask for its label h*(X;), or try to guess
it.

The (Informal) Goal
.~

Minimize sum of # wrong<guesses and # label requests.



Main Result

Definition (Version Space H;)
He={heH|h(X;)=h(X;) forall 1 <i<t—1}.

CAL algorithm Acar [CAL94]

Guess y; only if h(X:) = y; for all h € H;. Otherwise ask for X;'s
label.



Main Result

If d > 1, D is uniform on the unit hypersphere S¢ C RY, and H is
the set of halfspaces through the origin, then Acar makes
©(d32log T) label requests in expectation (and no wrong
guesses).




Main Result

If d > 1, D is uniform on the unit hypersphere in R?, and # is the
set of halfspaces through the origin, then Aca; makes
©(d32log T) label requests in expectation (and no wrong

guesses).

m This is the optimal dependence on T; known PAC lower
bounds imply Q(d log T).
m Moreover, we show that in this setting,

AcaL can be implemented in (amortized expected) time O(d>®)
per instance X;, independent of t.

This implementation has reasonable wall-clock time
performance (~ 0.3 seconds per instance) even for moderately
large numbers of features (d = 50).



Related Work
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m Disagreement coefficient-based analysis due to Hanneke
[Han07, Han14], specialized to our setting: with probability

1 —90, Acas makes
o(¢)

O(d*?log Vdlog T + Vd log T log
Yace)

label requests with high probability.

log T)
0

m Our result, although not a high-probability bound, removes
the loglog T term, thus showing Aca; eventually performs
better than previously known when d is fixed.

m Hanneke's analysis did not show that Aca; can be
implemented efficiently. /
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) = 2% —



Related Work

m Prior efficient algorithms for selective sampling include the
Active Modified Perceptron algorithm [DKMO5] and a class of
margin-based algorithms [BBZ07]. All of these algorithms
make mistakes.

m Moreover, their error bounds all have O(log T loglog T)
dependence on T. (Some of them have the optimal O(d)
dependence on dimension.)

m However, these algorithms apply in more general settings.
Margin-based algorithms have been shown to work for more
general distributions over R?, namely, log-concave
distributions [BL13]. Also, an analogue of Aca; has been
designed for the agnostic case where the labels need not
correspond to some h* € H [BBLO9]. Az
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Equivalent Sample

h* < C" O, Q"toj




Undetermined Observations are Vertices
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Cone Size is Constant

Power of email! Result based on [Kab20] after | found [KMTT19].
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Putting it Together
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Implementing CAL

Algorithm 1 CAL

1. B+
2: N=20 > |B| after last call to RRP.
3: fort=1,2,... do

4; if X; € cone(B) then

5: Classify X; as positive.

6: else if —X; € cone(B) then

7: Classify X; as negative.

8: else - 4
9: Ask for the label Y;.

10: Compute Z; = Y X:.

11: B+ BU{Z:}

12: if |B] > 2N then

13: B < RRP(B)

14: N <« |B|




Implementing CAL with Linear Programming
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Results
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Results
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Summary

m Acar [CAL94]| is optimal among selective sampling algorithms
that make no mistakes.

m We show that, in the commonly studied setting of
D = UnifS¢ and H halfspaces through the origin, it is more
label-efficient than previously thought, and it can be
implemented in a computationally efficient manner.

m This suggests that “safe” decision-making rules similar to
Aca; deserve a second look for applications such as content
moderation, legal processes, and the supervision of algorithms.

<2(d 4o,T)



Future Directions

m Real world decision making is noisy and complicated. Aca;
has been extended to an algorithm A? for the “agnostic”
setting, which can model noisy labels and tolerate simplified
hypothesis classes [BBL09]. Can our analysis be extended to
A7

m What about richer classes of distributions, such as
log-concave distributions [BL13]?

m Modeling hypothesis classes that change over time (evolving
norms)?

m What are the obstacles to using Aca; in practice?



Questions?
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Lower Bounds from PAC

Definition (PAC learning sample complexity my; p(e, ), informal

my, p(€,d) is the minimum number of labeled samples needed to
(with probability at least 1 — §) return a classifier with error
probability at most €, given that instances are drawn from D and
labeled by some hypothesis in H.

Let L+ be the total number of label requests, M+ be the total
number of misclassifications, and C+ = L+ + M. If

my p(e, 0) € Q(f(e,6)), then for some ¢ > 0, A > 0, all selective
sampling algorithms have ECt € Q ( thl f’_l(ct)), where

f' = f(e, A).



Our Lower Bound

[Lon95, Theorem 1]

My uniesd (€,0) = Q(2 + 2 log §).

Plugging this into last slide’s Proposition gives

If X = R and the X; are drawn i.i.d. from the uniform
distribution on S9, then all algorithms for selective sampling incur

expected cost Q(d log T).



No Upper Bounds from PAC

Figure: All points always undetermined



